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Abstract. We formulate ten questions, covering outstanding aspects of the phenomenology of
glassforming liquids, which we believe must be properly answered by any successful theory of
structural glassformers. The questions range across thermodynamic, mass transport and vibrational
dynamics phenomena. While these questions will only be addressed properly by a collective
variables approach (many aspects of which are reported in these proceedings) a number of them
can be dealt with by use of simple physical models of appropriate form. Here we discuss one
such model in which the existence of elementary configurational excitations of the amorphous
quasilattice is proposed. These states, which may range from broken bonds to packing defects,
can be excited independently in the majority of cases, or cooperatively in others. We summarize
essential results of this model. These suggest that the source of the different fragilities in liquids
(and the reason that structural glasses, alone among ‘glassy’ systems, have marked heat capacity
jumps at Tg) may lie largely in the way these configurational excitations couple to the vibrational
modes of the system. The generation of low frequency modes in the density of vibrational states,
as a direct consequence of the excitation of configurational states, explains why the quasi-elastic
scattering from fragile liquids is so much stronger near and above Tg than in the case of strong
liquids, and why the normal glass transition can be detected in picosecond time scale experiments.

Interactions among the ‘excitations’, or ‘defects’, are taken into account using the one
component system equivalent of the binary system ‘regular solution’ model (which keeps only
the first order term of the free energy of mixing expansion). We show that a liquid–liquid first order
transition must occur at sufficiently strong defect–defect interactions. The highly overconstrained
amorphous silicon quasilattice is a strong candidate for such a transition. We identify the ‘first
order melting’ of amorphous silicon, and the sudden, reproducible, termination of supercooling
in experimental liquid silicon and germanium, with the phase transition predicted by the model.
Many more cases of this phase transition may be anticipated, and a corresponding range of glasses
with low residual entropies—approaching the ‘perfect’ glass state—are predicted.

1. Introduction: ten questions

The behaviour of glassforming liquids is broadly recognized as being rich in phenomenology,
and, as this issue shows, theorists are very actively exploring ways of accounting for both its
thermodynamic and relaxational aspects. By way of providing some focus for such efforts, we
start this paper by using our familiarity with many of the experimental ‘structural’ glassformer
systems to formulate ten leading questions which we believe the theoretical community needs
to bear in mind as questions that a successful theory should be able to answer. The questions
are illustrated graphically in most cases by the panels of figure 1. Other authors working in
this area would no doubt generate somewhat different lists of key questions, but many would
be in common with the following. A much more detailed list, and the current ‘state of play’
with respect to observations (as seen by a panel of workers in the area), has recently become
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available [1], and the following is, to a considerable extent, an extract from that overview. Both
there, and here, we avoid any commentary on the adequacy, with respect to these questions, of
the many available theoretical treatments. Further, we do not intend this as a review and only
cite sources essential to the formulation of the questions.

The ten key questions, in the view of the present author, are:

(1) Why is there a pending entropy crisis for structural glassformers and not for other glass
types? By other glasses we mean spin glasses, proton glasses, vortex glasses, dipole
glasses etc [2]. This question can be rephrased as: why do fragile structural glassformers
generate entropy so rapidly as temperature increases above the glass transition temperature,
figure 1(a, i)? This in turn means, why is the heat capacity in the ergodic state of fragile
liquids so much greater than that of the glassy state (which has heat capacity due to phonons
only, except for very weak contributions from secondary relaxations), figure 1(a, ii)? The
diminutive rate at which spin glasses and quadrupole glasses generate configurational
entropy above their Tg can be seen from the contrast of their heat capacity–temperature
plots with those of structural glasses (see figure 1 of Angell (1990) [2]). No heat capacity
jump at all is seen at ‘Tg’. A detail of this question is the subsidiary problem of why
the large excess heat capacity (liquid crystal) in the case of molecular liquids follows
a hyperbolic temperature dependence so well (but see discussion below concerning the
excitation model).

(2) Why do structural glasses exhibit such a range of fragilities? Fragility can be defined
both from the kinetic behaviour [3], or from the thermodynamic behaviour [3, 4] of
the liquid, using the scaled plots of figure 1(b, i and ii). Very strong glassformers,
like SiO2, show only very small departures from Arrhenius relaxation time–temperature
dependence, with a phonon-like attempt frequency (pre-exponent 10−14 s), and exhibit
only small calorimetric manifestations of the glass transition (increases of heat capacity
on restoration of ergodicity). Fragile liquids by contrast show large departures from
Arrhenius temperature dependence and large heat capacity jumps, see figure 1(a, i). The
thermodynamic fragility can be misrepresented by looking only at the heat capacity jump,
however. This is because the Adam–Gibbs equation (equation (1) below), which makes
one possible connection between the two, inputs the total excess entropy [5]. A large molar
heat capacity change only implies fragility if the frozen-in molar entropy is small, which
is often not the case. This is taken care of in the recently suggested [4] thermodynamic
fragility plot depicted in figure 1(b, ii). Note that the alcohols, glycerol and propanol,
which seem anomalous when their large heat capacity jumps are compared with their
intermediate positions in the kinetic fragility plot, are back in the middle of the pattern
when the figure 1(b, ii) representation is used.

Thermodynamic and kinetic fragilities of diverse liquids will fall in the same order if the
kinetic term C in the Adam–Gibbs (A–G) equation does not vary too much from system to
system when correctly assessed. The A–G equation is

τ = τ0 exp(C/T Sc) (1)

where τ0 is about 10−14 s, C is a constant containing an energy barrier, 
µ, per molecule,
opposing the group re-arrangement, and Sc is the entropy difference between liquid and crystal.
A constancy of C is hardly to be expected, especially when the re-arranging units are not the
whole molecules (e.g. complex molecules and polymers, see section 2). This, and the relation
between kinetic and thermodynamic fragilities, are both controversial [4, 6, 7].

A related question, specific to covalent glasses, is, why are optimally constrained glasses
such as Ge–Se, or Ge–As–Se, with an average bond number per atom of 2.4 (the Phillips
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Figure 1. Key elements of the phenomenology of the viscous liquid and glassy states of matter.
Details of the points being illustrated are dealt with under questions (1)–(10) in the text.
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Thorpe threshold value), so non-fragile (Angell et al [2])? Since covalent glasses can be
considered simple by virtue of the dominance of a single type of interaction and the ‘on–off’
nature of the bonds (Angell et al [2]), this question is non-trivial.

(3) Why do fragile glassformers often (but not always) show the α–β bifurcation at Tα−β

and why does Tα−β correspond to Tc of the mode coupling theory? The splitting-off
of a broad, generally weak, and Arrhenius-like relaxation from the alpha relaxation as
the liquid relaxation time falls below about 100 ns, (figure 1(c)) is often observed in
fragile liquids [8] and can also be seen with difficulty in some intermediate liquids [9].
It has non-universal characteristics, in some cases disappearing on annealing below Tg

and in other cases not [10]. Its origin is not well understood, but it seems to involve
more localized motions than the α-relaxation. Its width increases as its peak strength
decreases. A striking feature is that the bifurcation falls at almost the same temperature
as the Tc of mode coupling theory, the crossover temperature Tx of Rössler scaling, and
the TB of the Stickel analysis of relaxation time temperature dependence [9, 11, 12]. This
correspondence needs to be checked out in more detail over a wider range of systems.

(4) Why does the mean squared particle displacement, MSD, measured on ps time scales,
show a break at or near Tg—where the alpha relaxation time is 200 s? This phenomenon
concerns motions which occur on much shorter time scales than that of the secondary or
β relaxation discussed in question (3). A typical result is that seen for selenium in [13],
which is reproduced schematically in figure 1(d). In a process which anticipates the glass
transition, the mean squared centre of mass displacement starts to increase rapidly in the
same temperature range in which the quasi-elastic scattering of neutrons or light begins
its rapid increase [13, 14]. At these temperatures, the corresponding diffusional MSD
should be of order 10−13 nm (and hence would be totally undetectable). The increase
begins when the MSD determined by the low temperature harmonic oscillations reaches a
value comparable with that characterizing the crystal at its melting point [13], suggesting
some sort of Lindeman criterion for the α-relaxation rearrangements. Is it anharmonicity
increases or non-diffusional elementary configurational excitations that are responsible?

(5) What is the origin of the boson peak, and the relation between the boson peak, the motions
responsible for the MSD behaviour discussed in question (4), and the two-level systems
responsible for the low temperature specific heat anomalies? The boson peak is the term
given to an excess in the low frequency density of states of glassy solids over the ω2

dependence characteristic of crystalline substances. Boson peaks are seen most easily
in the scattering of light from glassy solids [15] as a feature remaining after the thermal
population effect has been removed (figure 1(e)). Boson peaks have seemed to be universal
for glassy substances [15], though they are remarkably absent in certain cases of interest to
the present paper (e.g. glassy water [16]). Low temperature anomalies in the specific heat
(violations of the Debye T 3 law), which have also seemed to be ‘ubiquitous’ to glasses
[17–19] have been associated with the presence of a boson peak [15]. These are also now
found to be missing in the cases where no boson peak is found [20, 21].

(6) Why is the relaxation function non-exponential at temperatures where the relaxation time
is non-Arrhenius? It has always been assumed, in analysis of relaxation processes in
glasses and viscous liquids [22, 23], that there are two principal time scales, and two
sources of relaxation. The first (short time scale) step is the fast relaxation associated with
vibrational degrees of freedom, which equilibrate (following some step in temperature or
pressure) on such a fast time scale that glass phenomenologists have not been concerned
with it—except for needing to know the magnitude of the polarization, etc, that it produces
(see figure 1(f)). It is now usually referred to as ‘the microscopic process’ [24] and is an
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essential component of the mode coupling theory. The second is the slower relaxation
associated with the reorganization of the molecular structure to minimize the Gibbs free
energy of the substance at the new T , P point. The idea is well illustrated in figure 8 of
[25]. It is this latter process which is found to be non-exponential in almost all processes
in viscous liquids and glasses. Exceptions associated with dominance of large length scale
processes or long time processes, are discussed elsewhere [1]. In the high temperature
regime (Tm < T < Tb), the two processes merge and the total relaxation is exponential
(‘simple liquid’ regime figure 1(f, ii)). For any condition in which there is a two step
relaxation the second step tends to be non-exponential and, at least near Tg , the departure
from exponentiality increases as the temperature decreases. The behaviour depends on the
interplay of α- and β- relaxations, as reviewed in [1]. The departure from exponentiality
is well approximated in most cases by the stetched exponential (Kohlrausch) expression
[26].

Two subsidiary questions here are: (i) why is the non-exponentiality larger and
more temperature dependent for fragile glassformers [27]? (ii) what is the connection
between non-exponentiality and kinetic microheterogeneity on the one hand, and structural
microheterogeneity on the other? (See the next question.)

(7) What is the connection between microheterogeneous dynamics, seen in computer
simulation studies at temperatures below the onset temperature of two-step relaxation,
the microheterogeneous dynamics seen in experimental studies near Tg , and the non-
exponentiality of relaxation? Once caging (two step relaxation) has set in, computer
simulation studies show that a non-Gaussian distribution of particle displacements (which
is intrinsic to any two stage relaxation) sets in, accompanied by a set of especially mobile
particles which seem to move in ‘strings’ (Donati et al 1998 [28]). The strings aggregate
over time into clusters whose average size seems to diverge as the MCT Tc, i.e. Tx ,
is approached on cooling (Glotzer and Donati, Donati et al 1999 [28]). The average
length of the strings diverges more slowly (Glotzer [28]). Comparable behaviour is now
being seen in colloidal systems [29], particularly by Weeks and Weitz. On the other
hand, experiments on laboratory liquids show that a dynamic heterogeneity becomes an
increasingly important aspect of the structural relaxation at much lower temperatures, near
Tg [30–33], and seems clearest in fragile liquids [31]. The connection to an underlying
structural heterogeneity is implicit in the discussion of [32] but the structural heterogeneity
connection has not yet been explicitly confirmed, and it may not be possible to detect it
directly (see discussion in Ediger [36]). Annealing experiments should be very diagnostic
in this respect (see question (9)). Attempts to identify directly a growing static structural
length scale near Tg have so far not been successful, and the reason for this is a part of
question (7). For reviews, see [34] (experiments (Böhmer) and theories (Sillescu)).

(8) Why does the Stokes–Einstein relation between viscosity and diffusivity in single
component systems break down near and below the crossover temperature TX(Tc, TB)?
The temperature dependence of diffusivity has, surprisingly to most in the field, been
found to decrease less rapidly with decreasing temperature, than the viscosity, causing
violations of the Stokes–Einstein temperature which can become very large in a non-
intuitive direction as Tg is approached [35, 36]. Theories and models that relate this
decoupling to heterogeneity are reviewed by Sillescu [34]. Whether this applies to all
molecular liquids or only to fragile liquids is not yet clear. The diffusivity of network
liquids, in the strong extreme of SiO2 at least, remains coupled to the viscosity, though
only for the network centre particles (Si) [37]. The diffusivity of oxygen decouples by
two orders of magnitude [38]. Decoupling of cations from anion motions is commonly
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seen in ionic liquids with small alkali, or group IB cations. In some cases the decoupling
ratio, (τstructural/τconductivity) [25] can reach 12 orders of magnitude [39]. The situation
for anions in fragile ionic liquids is not yet determined.

(9) Why are the kinetics of annealing (ageing, equilibration) so non-linear (structure
dependent) for fragile liquids? Sometimes called the third canonical characteristic of
glassforming liquids [14, 40, 41], the dependence of the relaxation time of an equilibrating
liquid on two distinct temperatures has been recognized since the early 1900s. One of
these is, of course, the normal (kinetic-energy-based) temperature and the other is the
(potential energy based) structural (or ‘fictive’) temperature. In liquids above Tg , the two
are the same (unless a fast T -jump experiment is being performed), but below Tg where
the structure has become frozen, the fictive temperature is higher. The fictive temperature
is the temperature where the ergodicity of the system was broken, and it characterizes the
frozen-in structure which is evolving. In strong liquids the effect of the fictive temperature
is minimal. In fragile liquids it can dominate the relaxation. Then the relaxation rate
depends on whether the equilibrium is being approached from above or below.

Figure 1(g) illustrates the effect of fictive temperature on the isothermal kinetics of a faster
process (which could be mechanical relaxation or conductivity relaxation, for instance). The
fictive temperature equals the temperature of the experiment only for runs 4, 5 and 6. An
excellent review is given by Hodge [41]. How this behaviour is to be related to the non-
exponentiality, hence microheterogeneity, of the earlier questions, remains to be clarified.

(10) Why does the excitation of the structural degrees of freedom in some overconstrained
systems (e.g. Si, Ge) become first order in character, like a weak melting transition? Here
we refer to the phenomenon previously called the ‘melting’ of amorphous silicon [42, 43].
This is the sudden transition of the amorphous state to the metallic liquid predicted on the
basis of thermodynamic data by Turnbull [42] and later observed by Thompson et al [43]
by flash heating experiments. The problem in observing it is that, at the temperature of this
transition, the crystallization occurs on an extremely short time scale, and hence masks it.
The transition has since been studied in more leisurely fashion using computer simulation
[44]. Something very similar seems to occur in supercooled water, hence the phenomenon
is not simply explained by the delocalization of electrons in the high temperature phase of
Si. The same phenomenon can be seen in liquid Ge and other systems with the same open
network crystal structures (e.g. GaSb, AlP). A comparison with normal liquid behaviour
is shown in figure 1(h).
Related questions are: what are the conditions which must be satisfied in order to generate
polyamorphic transitions far below Tg , and when are these an indication of a true first order
phase transition which would occur at higher temperatures except for the intervention of
crystallization?

Many authors would consider some, if not all, of the above questions already to have been
answered to their satisfaction. It is not our role here to adjudicate. Certainly some questions
are better elucidated than others, but a comprehensive model is far from being realized. Such
a theoretical framework will necessarily be very complex because of the complex many-
body behaviour which must be described. While we are waiting for an appropriate collective
variables’ description to be developed there will be a role for simple real-space physical models
which rationalize some of the above phenomena in a manner easily understood. We feel it is
worthwhile to outline here one such model. The approximate success of its ideas might be
useful in guiding more rigorous treatments of the problem.
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2. An ‘excitations’ model for some salient features

The model in question is one that treats each minimum in configuration space as the energetic
result of a collection of individual and distinct real-space excitations of the ground state
amorphous quasi-lattice. It is, for instance, obvious that the different energy minima in
configuration space for a crystal represent crystals with different numbers of defects of one
sort or another. What is the equivalent of the crystal defect in the amorphous system? A
precise atomistic description of configurational excitations in amorphous quasi-lattices is
no more available than in the case of the ‘two level systems’ which provide the accepted
explanation of the ‘ubiquitous’ cryogenic anomalies in glasses, but some approximate ideas
have been advanced [45–47]. In the case where the dominant interactions between particles
in the quasilattice are covalent bonds, the broken bond can be taken as the excitation [45].
Spectroscopic evidence for the existence of such states was provided in an early version of
the present model [48]. Where no such bonds can be invoked, the excitations can be seen as
smeared-out versions of the interstitial defects of the crystalline state. This notion has been
introduced and developed by Granato [46], and has been particularly influential in our own
search for understanding of the origin of fragility in terms of the parameters of the ‘excitations’
model. An earlier less specific version was the ‘quasi-ponctuel defaut’ of Perez [47].

With the bond model it is easy to turn the strongly interacting particle lattice into a
weakly interacting ‘bond lattice’, so that the excitations can be treated as independent in
first approximation [45]. Only the coordination numbers of the bonded particles are needed.
The problem then becomes a simple ‘on–off’ model whose thermodynamic behaviour is well
known. As shown in figure 2 (Angell et al [2]), the ‘excitation profile’ for the mixed LJ system
found by Sastry et al [50], modelled by Kieffer [49] and extended to the Kauzmann temperature
by the author (Angell et al [2, 49]), is reproduced quite well by the ‘bond’ model equation
for the fraction of ‘off’ bonds (XB) at temperature T , when the two disposable parameters
(excitation energy 
E∗ and excitation entropy 
S∗) are properly chosen. The similarity is
modified if the effect on the simulated profile of anharmonic interactions is taken into account.
Buchner et al [51] have shown that these cause the profile found in simulation to be lower in
energy than expected from the Gaussian distribution of states which characterizes this system
(a Gaussian distribution was first identified by Speedy and Debenedetti [52] for a special hard
sphere system). The correction indicated by Buchner et al is introduced into panel (a) of
figure 2 as a dotted line affecting the high temperature portion of the profile.

Associated with this profile is a heat capacity that exhibits a maximum at the inflection
point of the profile. While such a maximum is observed in some cases of intermediate liquids,
it is uncommon, and its absence from the data on fragile liquids was a principal factor in the
present author’s long loss of interest in the excitation model after its initial development [45].

However, such a maximum has recently been seen in the simulations of the icosahedral
model of Dzugutov [53] and in the hypercube model of Stillinger [54], so it is not necessarily
an unacceptable feature. The model’s account of the Kauzmann entropy crisis [55] is quite
impressive as demonstrated recently by Moynihan and the present author [56]. Their plot for
the case of selenium is shown in figure 3. It is noted that the excess entropy is described
using only two parameters, since the number of bonds per atom which best fit the data is that
expected from the divalence of Se (viz., 1). The simple excitation model effectively denies the
existence of a Kauzmann singularity. (Note that Kauzmann himself [55] never proposed one.)

Although the account of the temperature dependence of the entropy seen in figure 3 seems
quite pleasing, the absence of a Cp maximum in the experimental heat capacity of most liquids
shows that the model is missing something. For instance, near Tg the parameters giving the
figure 3 fit yield a heat capacity which passes through a maximum while the experiments show
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Figure 2. Comparison of the inherent structure energy–temperature profile for mixed LJ [50], with
correction for high temperature anharmonicity given by Beucher et al [51] (dotted line) -panel (a),
with prediction of the two parameter excitation model [45, 49] with parameters chosen to match
the profile width (panel (b)).

Figure 3. The excess entropy of liquid selenium over that of the crystal, showing the usual
extrapolation below Tg to give the Kauzmann temperature, TK . Full and dashed lines are the
excitation model fits, assuming one mole and 1/2 mole of excitation per mole of Se, respectively.
The value of 
S∗ associated with the best fit value (n = 1) is a little smaller than for the case of
mixed LJ, implying that Se is a little less fragile than mixed LJ.

an (excess) heat capacity which continues to increase with decreasing temperature (see [56]).
For molecular liquids this dependence is well fitted by a hyperbolic law. The T −1 variation
would lead to a Kauzmann singularity at a temperature quite close to the value yielded by the
linear extrapolation to zero of the steeply falling part of the excitation profile, figure 2.

This disagreement of the experimental heat capacity with that of the simple (paradox
free) excitation model provides a supporting argument for the existence of a glass transition
singularity under equilibrium conditions. It could be even sharper than the hyperbolic law
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suggests if the conclusion of Buchner et al [51] for the mixed LJ system is correct. Buchner
et al made a good case for a Gaussian distribution of inherent structure energies. For such a
distribution, the constant volume heat capacity should go as T −2. The singularity would then
occur sharply at a higher temperature still, and one which is well above the usual Kauzmann,
or VFT equation divergence, temperatures (TK and T0, respectively). Furthermore, if the Cv

goes as T −2 then the temperature at which the thermodynamic integration of [57] predicts that
the system reaches the ‘top of its landscape’ will have to be revised. It will be much farther
above Tc than predicted previously [57], and much closer to the value of ∼3 TK observed in
figure 2.

Before proper comparisons can be made with experiment, some assessment of the effect
of the constant volume nature of the simulations (against the usual constant pressure nature
of the laboratory experiments) will need to be made. Very little has been done in the way of
constant volume measurements in the laboratory. The heat capacity changes at Tg will certainly
be smaller if the work of expanding the structure against the attractive forces is taken out, but
the effect on its temperature dependence will need to be assessed by experiment (laboratory
or simulation).

So far we considered only the simplest cases, in which the number of possible excitations
is the same as the number of particles (e.g. one covalent bond per Se atom in the chain,
figure 3). For molecularly more complex glassformers, and polymers, it is found as expected
that the number of excitable elements per molecule is more than one [45, 58]. The number
proves to be in approximate correspondence with the number of conformational degrees of
freedom per molecule [56, 58]. Thus it is not easy to see how the correct description of
glassformer thermodynamics could be formulated in terms of distinct groupings of molecules
(species) which coexist in a dynamic equilibrium of ideal mixing type, as has sometimes been
argued (e.g. ‘bulky’ and ‘dense’ species in water [59, 60]). Rather, as in the case of binary
solutions, any structural inhomogeneities must be thought of in terms of collections of the basic
rearrangeable units whose interactions alone determine the thermodynamic properties. The
equivalent ‘chemical species model’ of non-ideal binary molecular solutions was abandoned
in the early 19th century.

2.1. Entropy and fragility

Of the two parameters needed to fit the selenium excess entropy data, 
S∗ is far the
most interesting. This parameter controls the rapidity with which the entropy increases as
temperature rises, and correspondingly the rate at which the enthalpy increases towards the
value characterizing the ‘top of the landscape’. In other words it determines the thermodynamic
fragility. The 
H ∗ term only fixes the Kauzmann temperature, as obtained by linear
extrapolation of the excitation profile of figure 2. The smaller the 
S∗ parameter is, the
more extended in temperature is the excitation profile. Furthermore, the smaller the 
S∗ the
smaller the energy excited at the limit of high temperature. For 
S∗ = 0 only half the possible
‘bonds’ are broken. This would seem to be the case in chalcogenide systems containing Ge
and Se at 20 at.% Ge where the bond density is 2.4. This is the bond density at the ‘rigidity
percolation threshold’ in the Phillips–Thorpe treatment of degrees of freedom in a covalent
bonded particle lattice [61]. What can the connection be?

The connection of fragility to a single model parameter is provocative and stimulates a
quest for understanding of its molecular origin. Two possibilities are:

(i) a local configurational degeneracy w associated with the excitation: in this case


S∗ = R ln w (2a)
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(ii) a change in lattice vibration frequency due to the bond breaking: in this case


S∗ = −R ln ν2/ν1. (2b)

For the latter case the new frequencies generated should lie below the boson peak frequency
in the case of fragile liquids (according to an argument given elsewhere [56]). This has
stimulated a search for changes in the vibrational density of states during excitation. In his
consideration of the ‘interstitialcy’ model of liquids (and melting) Granato [46] pointed out that
interstitial defects in crystals produce new low frequency modes in the density of states, and
that this provides a strong entropic drive to high defect populations at high temperatures. The
generation of such increases in low frequency modes has been observed in neutron scattering
studies of selenium liquid versus glass versus crystal [62], and quenched glass versus annealed
glass [63]. We think this generation of low frequency modes (with large amplitude oscillations)
may suffice to explain the sharp increases in both low frequency light scattering, and mean
squared displacement, seen for fragile liquids as T > Tg (compare figure 1(d) with figure 1(e)).
This line of thought also predicts that these phenomena will show annealing effects, because
they are measures of structural excitation, i.e. of fictive temperature, (potential energy), not
actual temperature (kinetic energy). In effect, they are structural spectroscopy, rather than
vibrational, signatures of the glass transition [23]. The role of vibrational anharmonicity in
these phenomena ([14], Sokolov [15], [64]) could be subsidiary or dominant, and a relation
between the two is inevitable. Very low temperature light scattering studies of high fictive
temperature glasses will be needed to distinguish between them.

3. Cooperative excitations and liquid–liquid phase transitions

It remains to consider what should happen in the case in which the excitations of the basic
model discussed above are permitted to become cooperative. A way of treating this case to
first order is suggested by the parallel case of non-ideal interactions between molecules in
binary solutions. The expression which produces the excitation profile of figure 2 results from
assuming that the excitations are distributed over the quasilattice at random, which is the ideal
mixing assumption of binary solutions. The non-random mixing of molecules in solutions is
dealt with by expanding the free energy of mixing in a Taylor series and keeping the first term
(‘regular solution’ model) and the same can be done for the mixing of bond and broken bond
sites in the present model. It allows the state of excitation XB to be obtained by solving the
following equation for the Gibbs free energy, in which the only difference from the zeroth
order case is the presence of the term in W , the cooperativity parameter.

(∂G/∂XB) = 
H ∗ − T 
S∗ + RT ln(XB/(1 − XB)) + W(1 − 2XB) = 0. (3)

The results [56] are formally the same as those obtained by Ponyatovsky and Barkalov [65]
from the two liquid model they invoked to explain the amorphous state transitions observed
in InSb and related systems and Moynihan for water [66]. The results are shown in figure 4
for several values of W . It is seen how small values of W serve to increase the fragility and
the (extrapolated) Kauzmann temperature, while large values lead to a liquid–liquid phase
transition. This is very similar to what happens experimentally in the system Ge–Se, with
increasing Ge content beyond the percolation threshold value of 20 at.% Ge [67]. In pure Ge,
as in pure Si, supercooling is abruptly terminated at a temperature some 15% below the normal
melting point, which in the silicon case at least, corresponds to the temperature at which the
coordination number reaches 4.5 [68]. This is the value at which supercooled Stillinger–Weber
silicon undergoes its first order phase transition. The first order character of this transition in
the S–W model has now been established unambiguously by Sastry [69].
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Figure 4. Excess entropy–temperature plots for the cooperative excitations model in which the
cooperativity parameter W (equivalent to a binary solution’s non-ideality parameter) is sequentially
increased until a phase transition occurs.

These developments suggest that the extreme behaviour of Si and related systems is
generically related to the same excitation scheme that is responsible for the glass transition.
Now, however, the glass transition will occur, imperceptibly except by viscosity decrease, in
the strong liquid phase to which the high fragility (high temperature) phase has transformed.
It is significant that the low temperature phase of silicon (lightly doped with protons) and
the low density phase of amorphous water [70], should be the two known cases of glasses
which do not show anomalies related to the ‘universal’ low temperature violations of the T 3

heat capacity law. We see the sharp transition as a means of accessing a lower final entropy
state than is possible by the normal continuous slowdown glassforming route. We tentatively
correlate this idea with the recent findings that the two cases of amorphous solids which do
not fulfil the expectation that all glassy solids have low temperature anomalies (Debye T 3 law
violations etc) are Si and low density glassy water. The latter is also believed to have a sharp
thermodynamic anomaly, if not an actual phase transition, in the supercooled regime [4, 71].
This revives the hope of finding a route to the ‘perfect glass’ state, which may in fact be closely
realized by annealed low density glassy water and lightly H-doped amorphous Si. Routes
other than that of liquid cooling will be needed to access this state reliably. A number of such
routes exist [14].
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Rössler E and Sokolov A P 1996 Chem. Geol. 128 143
[12] Richert R and Angell C A 1998 J. Chem. Phys. 108 9016
[13] Buchenau U and Zorn R 1992 Europhys. Lett. 18 523
[14] Angell C A 1995 Science 267 1924
[15] Malinovsky V K and Sokolov A P 1986 Solid State Commun. 57 757

Malinovsky V K, Novikov V N, Parshin P P, Sokolov A P and Zemlyanov M G 1990 Europhys. Lett. 11 43
Sokolov A P 1999 J. Phys.: Condens. Matter 11 A213

[16] Schober H, Koza M, Tolle A, Fujara F, Angell C A and Bohmer R 1998 Physica B 241–243 897
[17] Zeller R C and Pohl R O 1971 Phys. Rev. B 4 2029
[18] Phillips W A (ed) 1981 Amorphous Solids: Low Temperature Properties (Berlin: Springer)
[19] Zhu D 1996 Phys. Rev. B 54 6287
[20] Agladze N I and Sievers A J 1998 Phys. Rev. Lett. 80 4209
[21] Liu X et al 1997 Phys. Rev. Lett. 78 4418
[22] Litovitz T A The Physics of Non-Crystalline Solids ed A Prinz p 252

Litovitz T A and Lyon T 1958 J. Acoust. Soc. Am. 30 856
[23] Wong J and Angell C A 1976 Glass: Structure by Spectroscopy (New York: Dekker) ch 11
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